精选罗素悖论的数学表达(95句)
罗素悖论的数学表达
1、 虽然现在数学家们还不能合理地解释悖论,但在不断地探索中,许多新的学科建立了起来,推动了数学科学的发展。
2、因此,在研究关于线段的几何学中,我们分析在一个平面中,所有线段之集合的属性。而这个集合的构成元素(即,线段),它们本身也是集合。
3、公元前4世纪克里特哲学家埃庇米尼得斯(Epimenides)说“我现在说的这句话是谎话。”
4、然而,我们已经将B定义为,“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselves)。
5、 芝诺提出,让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
6、 如果认为这句话是真话,按照句子内容来看,这就是句假话;相反,认为它是假话,由于它说自己说的是一句假话,那这就变成真话了。
7、目前,关于数学基础的各派思想依然层出不穷,至今没有形成一个在数学界被普遍接受的理论。(罗素悖论的数学表达)。
8、第一问如果回答是,两个问题答案相同,第二问也是“是”;如果第一问题回答否,两个问题答案不相同,那么第二个回答也还是“是”。
9、 我们一起看看下面的经典悖论,进行一场头脑风暴吧!
10、我们经常始于某个直觉概念——关于某物是如何运作的——而后我们发现在自己的直觉中,存在某些奇怪和自相矛盾的东西,随后我们会想办法处理这种奇异性,并解决难题。
11、值得指出的是,希尔伯特所说的公理不是我们通常认为的公理,而是经过了彻底的形式化。他们存在于一门叫做元数学的分支中。元数学与一般数学理论的关系有点像计算机中应用程序和普通文件的关系。
12、许多着名数学家从各种不同的角度进行研究、探索,试图把微积分重新建立在可靠的基础之上。法国数学家柯西是数学分析的集大成者,魏尔斯特拉斯则是数学分析基础的主要奠基者之他改进了波尔查诺、阿贝尔、柯西的方法,首次叙述了微积分中一系列重要概念如极限、连续、导数和积分等,建立了该学科的严格体系完成了微积分的算术化。
13、贝克莱悖论:无穷小量究竟是否为“0”?就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。
14、一旦开始将集合构筑在其他集合(即,大集合套着小集合),早期集合论者,便开始考虑一个有趣的命题——一个集合能否包括其自身,作为一个成员?(即,自含集合,a self-containingset)
15、描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,如:小于π的正实数组成的集合表示为:{x|0
16、这个难题,很自然地源自我们对“集合”的开放的、朴素的定义。
17、我们知道上帝是万能的,那么上帝能否造出一个他自己也举不起石头么?
18、毕达哥拉斯悖论:公元前5世纪,毕达哥拉斯学派的成员希帕索斯(米太旁登地方人,公元前470年左右)发现:一个腰为1的等腰直角三角形的斜边(即2的2次方根)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数。
19、M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
20、所以,我可以定义“不是自然数的‘所有实数’的集合”(thesetofallrealnumbersthatarenotnaturalnumbers),但是我不能制造一个“不是自然数的‘所有东西’的集合”(asetof"everything"thatisnotanaturalnumber)。
21、 像这些悖论还有很多,而且至今依然困扰着数学家和逻辑学家们。
22、这就是一个典型的因自指而产生的悖论,也叫说谎者悖论。与之等价的还有一种表达:
23、如果上帝能造出这块石头,可他自己又举不起这块石头,那他就不是万能的;如果他不能造出这块石头,那又怎么能说上帝是万能的。
24、根据我们的直觉,“集合”应该是“事物的聚集”(acollectionofthings),而朴素集合论,基本上就把这一直觉,当作了“集合”的定义。
25、三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支――证明论等――的形成上。为了排除集合论悖论,罗素提出了类型论;策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗――弗伦克尔集合论公理体系,以后又经伯奈斯和哥德尔进一步改进和简化,得到伯奈斯――哥德尔集合论公理体系;希尔伯特还建立了元数学;作为对集合论悖论研究的直接成果是哥德尔不完全性定理。
26、若Q∉P,根据第一类集合的定义,A∈A,所以Q∉Q,而根据第二类集合的定义,所以Q∈Q,根据第一类集合的定义,A∈A,所以Q∈P,引出矛盾。
27、有时候,数学的问题,可以在数学之外得到解决。
28、M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧
29、 如果强盗把商人杀了,就说明商人猜对了,这样就应该把商人放了;如果强盗把商人放了,商人就说错了,强盗应该杀掉他才对。
30、 英国哲学家罗素,用通俗的故事表达出了集合论中著名的悖论。1874年,德国数学家康托尔建立了集合论,到了19世纪末,全部数学几乎都建立在集合论的基础上。然而就在这时,集合论中接连出现了一些自相矛盾的结果,尤其是上面罗素提出的“理发师问题”。这么一来,数学的基础被动摇了,也就发生了所谓的第三次“数学危机”。
31、简而言之,这几位数学家的办法并不是“解决”,而是“避开”。他们通过各种手段,把所有涉及到罗素悖论的情况,都排除在外了。
32、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
33、我们不会去使用“所有事物”(everything)这种大到没边儿的词,诸如此种集合,必须被构建为诸多下属集合(subsets),而它们又要属于我们已经明确定义的一个更大的集合。
34、也就是说,村子里的人分为两类,第一类人会给自己刮胡子,第二类人从不给自己刮胡子。而这名理发师不给第一类人刮胡子,而只给第二类人刮胡子。
35、伯特兰·罗素(BertrandRussell,1872-1970),英国哲学家、数学家、逻辑学家、历史学家、文学家,他与怀特海合著的《数学原理》(ThePrinciplesofMathematics,1903)一书对哲学、数学和数理逻辑有着巨大的影响,使得他在学术上赢得了极其崇高的地位和荣誉。
36、元素与集合的关系有“属于”和“不属于”两种,比如“1”这个元素,它是集合A的元素,但是不是集合B的元素,写作
37、在形式逻辑中,同一律,矛盾律,排中律是形式逻辑的三大基本规律,罗素悖论违反了矛盾律而又得不到解决,所以对形式逻辑造成了巨大的冲击,被称为是第三次数学危机。
38、但是,从集合论诞生的那一天起,针对集合论的诘难和各种悖论的出现就从没有停止过。尤其以1902年罗素悖论最为有名。数学家们只享受了集合论带来的短暂的祥和,就又陷入了一种无法解决的危机之中,这就是第三次数学危机。
39、集合论为数学奠定了坚实的基础,许多概念不清的问题利用集合论得到了完美的解释。数学家希尔伯特度赞誉康托尔的集合论“是数学天才最优秀的作品”,“是人类纯粹智力活动的最高成就之一”。
40、男生对女生连续问两个问题,只能用“是”或者“不是”来回答。
41、“披萨”这个词也不是自然数,所以它是集合成员。
42、在世纪之交,卓越的分析哲学家伯特兰·罗素(BertrandRussell),发现这一概念(即,自含集合)中的一个严重问题,被称为“罗素悖论”。
43、设集合S是由一切不属于自身的集合所组成,即“S={x|x∉x}”。那么问题是:S属于S是否成立?首先,若S属于S,则不符合x∉x,则S不属于S;其次,若S不属于S,则符合x∉x,S属于S。
44、a属于集合A,表述为a是集合A的元素,记作a∈A
45、如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
46、希尔伯特的计划也确实有一定的进展,几乎全世界的数学家都乐观地看着数学大厦即将竣工。然而1931年,在希尔伯特提出计划不到3年,年轻的哥德尔就使希尔伯特的梦想变成了令人沮丧的噩梦。哥德尔证明:任何无矛盾的公理体系,只要包含初等算术的陈述,则必定存在一个不可判定命题,用这组公理不能判定其真假。也就是说,“无矛盾”和“完备”是不能同时满足的!这便是闻名于世的哥德尔不完全性定理。
47、哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们,真与可证是两个概念。可证的一定是真的,但真的不一定可证。某种意义上,悖论的阴影将永远伴随着我们。无怪乎大数学家外尔发出这样的感叹:“上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。”
48、罗素悖论中有许多例子,其中一个很通俗也很有名的例子就是“理发师悖论”:某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。那么就产生了一个问题:理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。这就产生了矛盾。
49、然尔人们只知道罗素悖论是违反了矛盾律,却不知道,这个悖论首先是违反了同一律,才会导致悖论,如果不违反同一律,则没有任何悖论可言。
50、这个悖论,以及产生自“自含集合”(setsthatcontainthemselvesasmembers),和产生自巨大的、不充分定义的“所有事物”之集合的其他难题,使得我们必须重新审视“集合”这个概念:它要更加正式,并且基于公理。
51、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。
52、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。
53、哥德尔(20世纪最伟大的数学家和逻辑学家,奥地利裔美国人)在逻辑学中的地位,一般都将他与亚里士多德和莱布尼兹相比;在数学中的地位,爱因斯坦把哥德尔的贡献与他本人对物理学的贡献相提并论。1952年6月美国哈佛大学授予哥德尔荣誉理学学位时,称他为“20世纪最有意义的数学真理的发现者”。
54、庄朝晖,基于对角线引理和维特根斯坦思想对于悖论的分析,第六届全国分析哲学学术研讨会,山西大学,中国,2010年8月(入选《中国分析哲学2010》,中国现代外国哲学学会分析哲学专业委员会编,浙江大学出版社,2011年10月,67页-76页)
55、萨维尔村理发师推出一块招牌:“理发师只给所有不给自己理发的人理发。”
56、悖论就是逻辑上的自相矛盾。悖论(反论,逆论)
57、在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
58、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。
59、当然,这只是罗素悖论的通俗说法。罗素悖论是关于数学中集合论的一个矛盾而提出的。
60、有这样一个人,他患有一种奇怪的色盲症,他会把蓝色看成绿色,把绿色看成蓝色,他自己并不知道他患有色盲,并不知道他和普通人不同,他只是把绿色叫成“蓝色”,把蓝色叫成“绿色”。
61、不可判定命题,尽管有些让人不舒服,但不足以构成一个悖论,从而完全毁掉一个逻辑系统。
62、解决悖论往往会给人们带来新的想法。根据悖论形成的原因,可以将其分为六种类型,所记录的悖论都是常见且流传广泛的。随着现代数学、逻辑学、物理学和天文学的飞速发展,出现了许多新的悖论。人们在孜孜不倦地探索。他们的成就将大大改变思维观念。
63、在二十世纪初,数学界笼罩在一片喜悦祥和的气氛之中。法国大数学家彭加莱在1900年的国际数学家大会上公开宣称:数学的严格性,现在看来可以说是实现了。他说这句话是有原因的,那就是德国数学家康托尔所创立的集合论。
64、三大数学哲学流派:以罗素为首的逻辑主义学派、以布劳威尔(1881―1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。
65、许多卓越的数学家深为这新的理论所起的作用而感动,希尔伯特(Hilbert)称“没有人能把我们从康托尔为我们创造的乐园中开除出去”。
66、因此,我们有理由也会有一个“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。
67、如果集合A是自己的一个元素,那么集合A就不满足“不包括自己的集合”的定义,不应该出现在此集合中,矛盾;
68、类似的这样的故事,好莱坞曾经拍过一部电影,那就是《前目的地》。
69、 很久很久以前,强盗抢劫了一个商人,他把商人绑在树上,打算戏弄商人一番。强盗说:“你猜我会不会杀掉你,如果猜对了我就放了你,绝不反悔!但要是猜错了,我就杀掉你。”
70、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。
71、M:这台可怜的计算机发起狂来,不断地打出对、错、对、错的结果,陷入了无休止的反复中
72、以上文章观点仅代表文章作者,仅供参考,以抛砖引玉!
73、数理逻辑这门学科建立以后,发展比较迅速,促进它发展的因素也是多方面的。比如,非欧几何的建立,促使人们去研究非欧几何和欧氏几何的无矛盾性。非欧几何的产生和集合论的悖论的发现,说明数学本身还存在许多问题,为了研究数学系统的无矛盾性问题,需要以数学理论体系的概念、命题、证明等作为研究对象,研究数学系统的逻辑结构和证明的规律,这样又产生了数理逻辑的另一个分支——证明论。
74、(换言之,上文提到的同时包括非自然数、披萨和加利福尼亚州的大而不当的集合,应该被构建为诸多下属集合:非自然数集合,披萨集合,美国诸州集合;而这些下属集合,又从属于其他更大的集合,比如数字集合,食物集合,各国州省集合。)
75、同时,我们对于下述建构也要谨慎得多,比如“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。
76、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。
77、但是集合的元素必须是确定的。所以有些概念不能构成集合,例如”美女的集合”就是一种错误的说法,因为一个人美不美会因为其他人的感受而异,不具有确定性。
78、为了建立极限理论的基本定理,不少数学家开始给出无理数的严格定义。1860年,魏尔斯特拉斯提出用递增有界数列来定义无理数;1872年,戴德金提出用分割来定义无理数;1883年,康托尔提出用基本序列来定义无理数;等等。这些定义,从不同的侧面深刻揭示了无理数的本质,从而建立了严格的实数理论,彻底消除了希帕索斯悖论,把极限理论建立在严格的实数理论的基础上,并进而导致集合论的诞生。
79、最有趣的就是理发师悖论。在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
80、集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象,意为由一个或多个确定的元素所构成的整体。
81、在一个村子里有一位理发师,这位理发师声称:“给而且只给那些不给自己理发的人理发”。现在问理发师是否要给自己理发。如果理发师不给自己理发,那么根据定义,他要给自己理发;如果理发师给自己理发,那么根据定义,他不能给自己理发。这就是著名的“理发师悖论”。
82、 类似的悖论还有克里特岛的哲学家说:“所有克里特岛人都说谎。”
83、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.
84、英国数学家罗素提出了与之相似的著名悖论:理发师悖论。
85、1918年,罗素把这个悖论通俗化,称为“理发师悖论”:有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。
86、如果集合A不是自己的元素,那么集合A就满足“不包括自己的集合”的定义,应该是此集合的元素之矛盾。
87、搬运翻译工:Suhrawardi(剑桥大学神学博士)
88、 甲问乙:你下句话要讲的是‘不’,对不对?请用‘是’或者‘不是’来回答。
89、若S不属于自身,那么S就满足集合所规定的元素性质,它应该属于自身S。
90、这样一来,这个集合就得到了自相矛盾的结果,与理发师悖论如出一辙。
91、因为集合论已经成为了现代数学的基础,渗透到数学的各个分支之中,因此对于集合论的这个悖论才会引发这么多的关注。
92、有一类特殊的集合,它不包含任何元素,称之为空集,记为∅。
93、比如,自然数集,再比如,所有的未成年人,等等。这个假设看起来很容易使人信服,但这种不受任何限制的建构集合的方式,就出现了问题。
94、科幻电影《回到未来》系列。图片来源:AmazonUK
免责声明:
以上内容除特别注明外均来源于网络整理,权益归原著者所有,本站仅作效果演示和欣赏之用;
若以上展示有冒犯或侵害到您,敬请联系我们进行删除处理,谢谢!